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RAREFACTION SHOCK POSSIBILITY 
IN A VAN DER WAALS-MAXWELL FLUID 

ABSTRACT 

The rarefaction shock is found to be impossible practically in 

an equilibrium Van der Waals-Maxwell fluid, in and across all phase 

regions.  The existence of this, type shock depends explicitly on the 

constant-volume specific heat, as well as the pressure equation of 

state. The form of specific heat assumed here includes contributions 

from translation, rotation, and vibration energies of the molecule; 

Einstein functions are used to represent the latter.  In particular, 

the vaporizing expansion wave in the saturated liquid phase cannot be 

discontinuous.  Metastabie states of supersaturation are not considered. 

Despite the results for this theoretical model, the necessary conditions 

for the rarefaction shock are found to be satisfied, in principle, for 

a small region near the critical point of a real two-phase fluid 

(steam). 
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I.  INTRODUCTION 

In most fluids, including the ideal gas, an initial compressive 

disturbance steepens with time into a compressive shock discontinuity, 

while an expansive disturbance flattens out, never producing a dis- 

continuity.  This type of response depends on the equation of state for 

the fluid.  In principle, the possibility of contrary responses to 

initial disturbances exists in fluids obeying certain state equations. 

For example, Paxton"' discusses the rarefaction shock possibility in a 

plasma carrying a large electrical current. And Zeldovich and Raizer2 

cite a possible rarefaction discontinuity in the gaseous phase of a 

Van der Waals-Maxwell fluid near its critical point; their treatment of 

this problem is a reproduction of one given earlier by Zeldovich3 in 

i ok 7 

A detailed analysis of the shock discontinuity for arbitrary state 

equations was made in 19^2 by Bethe4 in a report of initially limited 

distribution. And it is shown in [k]  that the probability of satis- 

fying a necessary condition for the non-MHD rarefaction shock in the 

gaseous phase of a substance is practically non-existent, including 

the specific fluid treated in [2] and [3].  The equilibrium coexistence 

phase of both liquid and vapor was not considered. 

In this paper, the two-phase region of the Van der Waais-Maxweii 

fluid is examined.  Motivation for this investigation is provided by 

observations on exploding wires.  The early electrical resistance of 

many exploding wires fits a model which assumes a vaporizing expansion 

wave proceeding radially inward from the cylindrical surface, shrinking 

the conducting cross section of the intact molten interior 5>6. The 

existence of such a wave can be predicted from a two-phase fluid model; 

and the Van der Waals-Maxwell fluid yields wave velocities which are in 

fair agreement with experiment7. It is of interest to know whether 

this model will predict a steepening of this expansion wave into a 

finite rarefaction shock. Although the discontinuous part of the 

^References are found on page 29, 



expansion is not an absolute necessity for the experimental interpre- 

UclUXUIl,     XL.    WUUiU    ctb^x^u    Xll   uncling    a.    oimpxc    cuiia    k.uni.cjJi.uaixiy    juauuiuir; 

explanation for the resistance behavior. 

This treatment is limited to thermodynamic equilibrium, thereby 

excluding metastable conditions such as superheating or supercooling of 

one of the phases.  Although ever mounting evidence shows the Van der 

Waals-Maxwell model is not an accurate description in the critical 

region of a fluid, it is still valuable for its simplicity, and as a 

standard of comparison for recent empirical proposals of state 

functions there.  Recent computations of its coexistence properties 

have been made bv Barieau8 . and we ado-pt his notation for the scaled 

We find that the rarefaction shock possibility is even less 

likely in the two-phase region of this fluid than in the single phase, 

-wiTnopa T_+ has already been shown to be "nracticallv impossible .  Then- 

despite the results with this model, we show by direct use of steam 

tables, as suggested by Novikov9, that the rarefaction shock possibil- 

it.v cannot be dismissed over a small nart of the wet vauor state of 

steam near critical. 

II.  DISCONTINUITY CONDITION 

Let P, V, T, and S be pressure, specific volume, temperature, and 

specific entropy respectively.  The change of entropy across a dis- 

continuous transition of a system initially at the state (P0, V0, T0, 

S0 ) to the state (P, V, T, S) is given by 

S - S0 = - (V - Vo)
3{(0) } /(12T0) + •••.       (1) 

3 ■ 
0 

This expression follows from several properties concerning the 

mechanical discontinuity relations which are proved by Courant and 

TT1 :   ~ J —-:   ~T~ «1 0 rrfU«^^      -^-«^-^~-„4- A   ^ ~        ~™~.   . ^"^       4-Vt/-*      r^»n«r<nvi^       fnnn+n^vi      *D      —      H. (\T    1 rncui'iuiis        .        liiere    piupci uicc;    aic.        a, j    one   ]JICCCLUC    IUULIJ±UII   ±    —   uyv / 

of the transition Hugoniot curve makes a second order contact with the 

pressure function P -  g(v) of the adiabatic isentrope at the conditions 

10 



id b) the entropy change along the Hugoniot 

curve is third order in volume change from the initial state with 

(§). - (ffl - °> M* (w). " - (S^)y(2T°'- »■ flrst coMition 

im-nlies Tir^r) r = (773") ; making a series expansion of (S-S0 ) in 

terms of (V-V0) then results in the first non-zero term shown in Eq. 

(l)s Not all gas dynamic transitions possess the foregoing simple 

properties; a notable exception is the detonation wave. For our 

purpose, we have assumed that the fluid on both sides of the disconti- 

nuity obeys a unique state equation, so that the transition is neither 

exothermic nor endothermic; a discussion of the Hugoniot curves for 

these latter transitions is given by Hayes" . 
/^3p^ 

The  form of Eq.   (l)   shows  that for the  usual fluid where {
K^JS~J     is 

■- '  s 

positive, the transition which increases the entropy forces V < V0, as 

in a shock compression. Were l^5"J negative, however, then the 

condition for increased entropy would be V > V0, corresponding to the 

rarefaction discontinuity.  The possibility of the rarefaction shock 

process is seen to depend on (STTS-
) being negative.  It is this quanti- 

ty which we investigate for the Van der Waals-Maxwell fluid.  The state 

functions P, E, and S (where E is the internal energy) are expressed in 

terms of the independent variables V and T.  We will use the 

differential operator 

VoV/s "  ^dV/s VdT/v   
vdV/T 

(2) 

along with 

and the identity 

TdS = dE + PdV (3) 

V"1- / 

11 



Both dE and dS are assumed exact differentials of V and T within given 

V, T, regions.  The constant volume specific heat is Cv = (^r;) , and i: 

assumed never negative.  From Eq. (3) one finds \^j]    =  -  P directly, 

and application of operator (2) to E, and using (h)  results in 

\^j)    =  -   (T/Cv ) \^;j   5 again using Eq. (2) on P results in 

(%\ = - (T/C ) (|f)% (If),  .       (5) 

With w the adiabatic (and in this instance, isentropic) sound speed of 

the substance defined by w2 = - V2 i^z)   ,   the right side of Eq. (5) is 

seen to be - w2/^2.  The sound speed is expected to be real and finite 

for a well-behaved fluid; sin^e T and Cv are always positive, then w 

will certainly be real if (^77) S
 0.  This latter condition holds for 

most substances, including the Van der Waals-Maxwell fluid, which we 

now describe more completely. 

III.  FLUID MODEL 

The fluid may be either a liquid, vapor, or an equlibrium mixture 

of the two phases.  For either of the single phases, the pressure is 

given by the Van der Waals function, 

PW(V,T) - fRT/(V-b)} - a/V2, (T > 0, V > O) (6) 

where R is the gas constant for unit mass and a and b are constants typi- 

fying the substance.  By choosing for unit mass the molar mass of the 

substance, one replaces R with R, the universal gas constant.  The (V,T) 

region where Eq. (6) applies is T > 0, V > 0 except for the region of 

phase coexistence.  The coexistence region is defined by T £ Tc (where 

subscript c always denotes critical conditions) and V3(T) ^ V S V (T), 

12 



with the loci V3(T) and Vi(T) specified later. Within the region where 

T? r\ (£\  I      QTvnl  -ioc •__      rl-i-F-f>__v»__,r.-r--._-f--ir.-n     Vnr     T    r\-F     T? **. llll       C:>II^T,T^      "Mno-f     P..        "1   <"" 
IJV^I y W  y        t^.^/^ -i- -L-  _-  kJ   j ^j.       UilX^l^llUXCdU  J.VJ1        |_y(y j.       w _L        J-J '^  • \ ~~r / MllVIIW uiiu.  u        v_<if _i_ . _. 

independent of V.   Outside coexistence, the fluid consists of a 

single phase, either liquid or vapor.  For convenience we label the 

ypcnnns T S T,. h ^ V 5 V«.T) as the linuid nhase. and assert the vanor ■*■ w o — « —  —     — L. 7 ■ j \ — /     "a. — x — p         _______       —_._ _ _ 

phase occurs in both T s TC, V ^ b, and in T £ Tc, Vi^T; S V. 

The pressure in the equilibrium coexistence region is not PW(V,T), 

but is instead the vapor pressure function, P,(T), independent of V. 

Til--; _.   -P--_ ~4-^ -v^   ^ ^   *-,-+-   ^_-PTV-^-^]   .- -r-— "1 ^  _T 4-1 Tr t   -S4-   W1-i-i--t-   ~-I-4-T~-PTT  4-T.I^V   _^-~^T4-T-*-(- > ±Lij-_>    luiiuoiuii   __    i__ u    ucixucu    _ __ jj-L a. u j_ u x^y ,    xu   iiiLic; o    üauiüi.y     uwu    üuiiuiiiun, , 

a) the pressure across the coexistence boundary must be continuous, and 

b) the chemical potential, or Gibbs free energy function E - TS + PV, 

is constant for fixed T T'Ti^~hin coexistence and is continuous across the 

boundaries. Both these conditions are satisfied by the Maxwell rule: 

for any T £ Tc , 

Vi(T) 
r>   !\i   rrA^Tr   —   _    . m^   fir_ (<v\   _   xr   I<v\"i (r7\ XW \ v j x/_v    -   _. A \ x ;    i«l\i;    -    '3\i/Jj \W 

V3(T) 

with the subsidiary conditions PH(Vi,T) = PA(T) = Pw(V3,T).  Eq. (7) 

and its subsidiary conditions fix P.(T) and the V3(T) and Vf (T) loci of 

the coexistence boundary. This i-iaxwen ruie impxiciuxy imposes .ue 

restriction for fixed T £ Tc that Cv(T)(liquid) = Cv(T)(vapor) = C°(T). 

Although there is another suggested rule similar to Eq. (7) which 
•     .. ..      i« . 

relaxes this condition on the specific heats   it is less convenient 

because it requires additional information about the difference of 

these specific heats.  For simplicity, we confine present attention to 

the Van der Waals-Maxwell fluid with the coexisting phase region 

governed by Eq. (7). 

The isotherm segments of PA(T) are isobaric and extend from V3(T), 

the saturated liquid locus, to VI(T), the saturated vapor line.  By 

replacing those portions of the mathematically defined but thermo- 

dynamicaiiy unacceptable isotherm segments of Eq. (6), with the accept- 

able isotherm segments of PA(T) in the coexistence state, we have 

1^ 



/*v\ /rtP\ 
removed any possibility that I^TTJ might be positive for this fluid. 

This fact insures that the right hand side of Eq. v5) is negative in 

all regions of interest. 

IV . 

We review briefly the conditions found in the ''ingle phase of thic 

fluid. Allowing Cv to be a function of temperature alone, and 

successively applying operator (2) twice to Eq. (6), one finds 

with the dimensioiiless quantities 

, /~o /_ \ 

0(T) = (2 + R/cS)(l + R/C°) - T(R/C°)3 g£*^,        (9) 
. .   ■     , .       . .       .     ul 

Y(V,T) = 6a(V-b)3/(RW4). (10) 

We see two ways the right hand side of Eq. (8) can be negative. 

First, if 0(T) < 0, the right side is always negative because 

Y(VJT) is > 0, and V >  b.  For 0(T) < 0, the rate of changes of C° (T) 

with increasing T must be large.  If 0(T) < 0, then even the ideal gas 

might sustain a rarefaction shock.  This fact may be seen by observing 

that the Van der Waals pressure function reduces to that of the ideal 

gas when both constants a and b of Eq. (6) are identically zero; the 

vi r-rVi +    cH^o   of   V.n        (R\    -f-.Vion   Vipnnmp.':    (A (T )WV/M2 .    wi t.h    S1 on    rlPTIPllrfins   On 

.   / _ \  - .    . 3       /   \ 

0{T).     Thus, negative <p{T)  permits botn tue ideal gas ana tne single 

phases of the Van der Waals fluids to meet the necessary condition for 

the rarefaction shock»  The nrobabilitv of negative 0(T) will be 

discussed in Section VII. 

But there is a second way that the right side of Eq. (8) might be 

T I, 



negative.  'mis condition occurs if 

Y(V,T) > 0(T) (11) 

for a particular (V,T) domain.  The constants a and b can be expressed 

in terms of the critical values of P, V,and T, as b = Vc/3, 
„    _    /n/fl\nm   ir       „„A    4--u„    „„ n „J--; «»N    n   u       _    /"o/P^-Dm ml,«    -p,-,,-, „4-•; ~»,   vAr   rp ^ 
ct   =    ^/u;ni[ VQ    ctnu.    one    reiauiuu   rCvC     —    V->/uy-n-J-C'        J-nc    ± UUVJ uiun    nvji; 

has a maximum value with respect to V at V = 4b = (4/3)VC; meanwhile 

the permissible T values are bounded below by T(min), corresponding to 
TrQlu°s QloTirr **"he coexistence ^oundQY,,Tr since En  '8 * a-n"nlies onlir to 

the single phase region. At V = (4/3)VC, T(min) = .9834 Tc; if Cv is 

constant with T, so ^ y-'—<- -  0, then inequality (ll) can be satisfied 

for the dimensionless quantity (Cy/R) 
ä 17-5-  Very large values of 

- o d'C0 /RI •  • 
(CV/R) and/or ^

WY /xxL  are needed to fulfill inequality (11), even when 

the specific volume lies in a small neighborhood slightly larger than 

„ ™ ■? + -;„., n ,,^1,-,™«    A „.„■,•,« T.T« A^-P^™   A A r, „,,^ o-,-^^ ^-p n /r> 4-,-, o 1 „4-«-« ,-^.-,4--;«^ 

V.  COEXISTENCE STATE 

A.  Justification of Model 

This section deals only with the (V,T) region of coexisting phases 

of the fluid.  However, some justification and caution is needed in 

applying continuum fluid mechanical concepts to this regime.  The 

vapor pressure function, PA(T), used in the equilibrium two-phase region 

applies to a variety of combinations of coexisting liquid and vapor 

phases, requiring only that the phases have equal temperature and 

pressure.  For example, the entire liquid phase could be located at one 

end of a container, with the vapor phase at the other; in this instance, 

a unique "sound" speed for the system would appear unjustified.  The 

two-phase fluid mixture could approximate a continuous medium, pro- 

in rln y~\ rr     QonVi     TAVI nca      n   c      rln cnQV'Cn^     T.TH 4-VIIVA     4-VI Q     n-f-Viov»      CA     +■ Vir»+      + VIA     WI-1 v-f-n-nn      ■? vi vxuxug     i- u.v_ii     jjiia,uv-      _L>^      U.±U]J^I uuu     W_L.UIJ.J-IJ.      unc     u unci       ow      onao      <-/ lie     uiJ-J".. L> i - [  c      J.I1 

a small volume appears homogenous on the length scale of that volume. 

15 



If, in addition, the dimensions of this volume are small enough that 

the mechanical relations may be reasonably approximated by differential 

equations, then continuum fluid mechanics can be used.  We assume that 

+V}g3g conditions apply in our further treatment of the coexistence state. 

In this connection, Cowperthwaite and Ahrens-"" have recently given a 

discussion of the thermodynamics of the adiabatic change of a system 

consisting of two phases at the same pressure.  They find several ways 

such a change is also isentropic; one of these requires reversible heat 

exchange between the phases, with the mixture composition changing so 

that the phases remain in chemical equilibrium. Using the vapor 

pressure function, PA(T), defined by Eq. (?) as the pressure state 

equation for the coexistence region, insures equilibrium of both 

chemical potential and pressure; thus, infinitesimal adiabatic changes 

in thi s twn-rshasp svstem wi "I ! olsn >>P i spntrnm' n .  The miestion of 

whether the finite adiabatic change of this type remains isentropic 

requires further investigation, and it is this problem that we are 

considering. 

B.  Specific Heat 

By using PA(T) for P in Eq. (h), integrating with respect to V 

from V3(T) to V(T), where [v3(T) £ V ^ VI(T)}, and differentiating the 

rpsnlt. hv T. one obtains the specific heat at constant volume for the 

coexistence region.  It is CVA^Ty, given by 

/,.       m\ r.0     /rr,\ l/m\ L        fv      IT        /l«U T { fTl *\ I  1   O  "\ uVA \v ,rj   = iy liJ + -"-V-W 
T
 «. V-V3 V-L;J O\±J , \^i 

where A(T) = V3'(PA-TPA ' + a/V3
3) and J(T) = TPA", where the prime 

hereafter signifies ordinary temperature derivative, and Cy(T) is the 

constant volume specific heat outside coexistence. As expected, 

CVA^V,T; is a linear function of V 

obtained from Eq. (7)? viz., 

TPA'- PA = a/(ViVa). (13) 

16 



Eq. (13) results from differentiating Eq. (7) by T, applying the sub- 

sidiary conditions, multiplying the result by T and subtracting Eq, (?) 

from both sides.  Computed values from Eq. (?)> as well as limiting 

values as T - TC
P show that PA ', PA", and V3 ' are all positive for 

T s Tc.  It follows that J(T) is always positive in coexistence; since 

Vi ä V3 , using Eq. \±3)  in the definition of A^Ty shows that A\,T; is 

never negative here.  Therefore, CvA(V,T) is positive; since 

Vi ^ V ^ Vr>   for any fixed T, one finds the inequality 

0 < CVA(V3,T) * CVA, (V,T) * C¥A(Vi,T). (11+) 

C.  Coexistence Isentropes 

Since PA(T) is independent of V; using PA(T) for P in Eq. (5) 

gives (!!*-) = - (T/CVA)(PA 'f. Using operator (?) on this latter 

expression, remembering that CVA depends on both T and V, results in 

i-»p—  V 

where 

(IS*-)  = (T/CVA
3)(PA')

3 L(V,T), (15) 

/-*. ,-*      ^ 
L(V,T) = (l+3J(T)/PA '} CVA - T (%*-)  .   r-l£\ \ 01 /, ^iu; 

From Eq. (12) one finds 

ixU 

where 

IV 9T /¥ 
v' '~'J   ~v  ' "   "'° "   \ / 

Ws show in the appendix that J7(T) is positive for T < Tc . With 

V ä V3(T) in coexistence, the following inequalities come from Eq. (l?) 

iv-äT^ ^V3'i;js iv-aTA ^v'^;nv-är^/vi'T;;- ^ 

J-Y 



Noting that Pi' and J(T) are positive quantities, one can make use of 

relations (i^), (19) ? (i6) and (,15) to obtain the further inequality 

and consequently 

|(§#js   (V, ,1)} * {{^),   (V.T)> ^ il5v^Js (V3 ,T)|. (21) 

Inequality (21) shows that the size of the second volume derivatives of 

fhp ispntroTiPS in coexistence is bounded 'he+vween t.he value on the 

saturated liquid and vapor lines, the smaller being on the latter locus. 

Thus, examination for the rarefaction shock possibility can be made at 

the saturated vapor locus, with the assurance that if the necessary 

condition be met anywhere in coexistence, it must also be met on this 

locus. We recall from Section IV that the most likely neighborhood for 

the occurence of this condition in the single phase was also adjacent 

to the saturated vapor line, i.e., for V as (ty3) Vc and T = T(min). 

BvEa. (15). the sign of [K^SH     is seen to be that of L(V,T); - - - • -      -    \o v  / s 

setting V = Vi(T) in Eq. (l6) gives L(Vi,T) on the saturated vapor 

locus.  Defining Z(T) = 1 + 3J/P» ', and arranging the terms to show 

explicitly the dependence on the specific heat of the single phase, one 

obtains 

L(Vi,T) = ZC° - T(C°)' + K(T)S (22) 

with 

K(T) = ZM(T) - TN(T), (23) 

M(T) = CVA(VI,T) - dt   = A + fVi-V3] J(T),      (2k) 

and 

i n 
j-O 



. .  ra (r.... -r° V 
N(T) = [-j,"™ ~" (Vi ,T) = A'' - JV3 •' + (V1-V3) j'       (25) 

All the terms making up the function K, M, and N are explicit functions 

of T, independent of C° , and can he computed numerically from Eq. (7). 

The numerical methods are satisfactory, except when T approaches Tc; 

hut here the limits of the functions can he found from a series 

expansion around Tc
8.  The computations are conveniently made in terms 

of the reduced variables formed by scaling P, V, and T by their 

critical values. 

The limits at Tc of most of the functions making up Z(T) and K(T) 

are given in Refs [8]; the few others needed are shown in our appendix. 

The forms of Z(T) and K(T)/R are displayed in Figs. 1 and 2; they are 

both always positive, monotone decreasing with T, and have their 

smallest values of 8.200 and 31.86 R, respectively, at T = Tc.  With 

Z and K always positive in coexistence, Eq. (22) shows that if C°   is 

constant with respect to I, I(C° ) ' = 0}, there is no chance of a rare- 

faction shock in the two-phase region.  This fact contrasts with the 

thermodynamic behavior of this fluid in the adjacent vapor phase, where 

a constant but large value of C° permits (5^5-J to be negative.  The 
%w v 's 

only possibility of negative L(V,TJ rests with T(Cy)'  being larger than 

ZCj + K(T), or in the form of an inequality, 

T(C°/R)*[K(T)/R] + Z(T) (C?/R)> 8.2 (C°/R) + 31.86 .     (26) 

D.  Coexistence Boundary 

For completeness, the change of (577) across the coexistence 

boundarv should be investigated.  Thus, a comparison of (^r^1-) for the 
\uv / s 

Au \ 
single phase isentrope with I fzf~)    of coexistence, each evaluated at 

the same boundary point is needed to show the sign of any discontinuity 
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in \:T77l    across this boundary.  This problem on the phase boundary for 

the liquid-vapor transition has previously been treated in Ref. f+], 

for an arbitrary equation of state; the discontinuity was always found 

to be positive.  The Van der Waals-Maxwell fluid is no exception to 

.-   - _     . .       „   .,    ,   fh?\     . this  rule.    We  recall from section ±1 tnat \^7fJ    is  everywnere  negative 

for this fluid.  Omitting considerable algebra we exhibit the result 

.        fov.\ /oP,,\ . .. .... ,      ,    ,     , 
for A  = \^7f~J     -  \^f~J   5  where  all  quantities  are evaluated at  a point 

on the phase boundary,   either saturated liquid or vapor;  the product of 

A  and CVA(Vj ,Tj  is 

ACV. (V, ,T)  .  -   (1/C; )  (|f )t   {c°,   ♦  TV3 i^)J   -  t,   <&\ ,        (27) 

with 

fj    =  TPA"   (Vj (T)   - V3(T)} (28) 

and subscript J taking the value 1 or 3, depending on whether the 

boundary point lies on the saturated vapor or liquid locus, respec- 

ivelv.  The quantity f, is either positive or zero, while \^f-)     is 
■■-"<   ■ s 

always negative, so the contribution from the second term of Eq. (27) 

is either positive or zero because of its negative sign.  Meanwhile 

[TT?~)    is never positive on and outside the coexistence boundary, 

while CvA is always positive, so A is never negative. Hence, no rare- 

faction discontinuity can occur because of a negative jump in i=rrr; 
\ÖV/ s 

across the coexistence boundary. 

VI.  SPECIFIC HEAT FUNCTION 

For this fluid, a necessary condition for the rarefaction shock 

depends explicitly on the constant volume specific heat. We explore 

briefly the expected contribution from a representative specific heat 
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function.  Choosing the same units for Cy and R, the ratio Cy/R is 

dimensionless.  To good approximation, C°/R can be expressed in terms 

of translational, rotational and vibrational energy contributions, 

respectively, as"", 

(C°/R) = (C°/R)(tr.) + (C°/R)(rot.) + (C° /R) (vib.).       (29) 

(C?/R)(vib.) -^(x,), (30) 

where ail sums range from 1 to A, where A is the number of vibrational 

modes, and g, (x, ) is an Einstein function given by 

g,(xj ) = (xi/sinh xt )2, (31) 

with x, = e,/(2T), and 9, a constant for the ith mode. Eq. (30) is 

usually applied to a polyatomic gas, where the first two terms on the 

right sum to a constant value B/2 ranging between 3/2 and 3, according 

to the molecular structure, and A = 3N - B where N is the number of 

atoms per molecule.  If N > 2. E is always 6, a condition we henceforth 

assume.  If optical modes ^electronic vibration; are also included, A 

becomes correspondingly larger, as N must now include the electrons; 

however, the 9, for the optical modes are usually so high that they add 

ll'Hlo     +r\     +VlQ      t-r>a(iifio     V1O0 +      o+     + am-i^o v» o + n ^.n o      1 p c o      -l-Vi^v-,      CnOA0      V^ 4 
-1-J.WWJ-V^     u^     üii^    up^^j.± xu    nv-au    ciu     u ^ nipt; ± a, L» LAJ. C O    J-S^W     UIICLII    J\J\J\J       IY        • 

From the forms of Eqs. (29) and (30), it follows that 

A 

T(CV°/R)'' =£ ^(x,) (32) 
1 

with 

iVj V>ä   /   -  e JL    LAJ   uuüii A,    -   smri x, j/ (.smn x. ;      . \ii) 

'Pi 



This function kt(xt) has a maximum value of .6757 at Xi = 1.7^; while 

g. (x. ) has its largest value of 1 at x, =0.  Therefore, 

T(C°/R)' < .676 A, (31)) 

where equality is approached only if all 9, have the same value, and 

k. is at its maximum; ana 

2 I  gt (xt) < A, (35) 

where the equality is approached only if every 9 4  T, so each xt is 

nearly zero. With the assumption B = 6, use of Eqs, (29) and (35) gives 

3 ^ C°/R ^ 3 + A . (36) 

With the preceding model for the specific heat, one may now assess 

/g2p\ 
the chance of satisfying the necessary condition (=^g"J < 0 for the 

rarefaction shock in this fluid. 

One seeks conditions where 0(T) might he negative.  Making use of 

the strongest form of the inequalities Eqs. (3^)-(36) in the definition 

of 0(T), yields the very strong inequality 

0(T) > 2 - .676 A/27 . (37) 

One concludes that 0 could not possibly be negative for A less than 80 

modes: this condition appears to exceed reality sufficiently as to be 

practically impossible. Actually, a weaker form of inequality indicates 
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A must be very much larger,   as pointed out in Ref.   [k].    For example, 

assuming all  9    =  8j,  then 

0(T) >  2  - W(AjXl )  =  2  - Akj (xj )/[3  + Agl (xj ) f . (38) 

WCAjX^^ ) has  a single maximum with respect to A,  denoted by WM (xj )  at 

A  =  3/[2  giUj].    WM(Xl)  -   (V2l+3)(f1/g1),  where   (f,/gl)   = 

PlX-i     COSh   X,     -    Sinh   Xi   i/sinh   X*   *    and  W»    inprApRps   mnnnf.nm'r'pllv   wi th 

x1 from its zero minimum value with respect to x, , occuring at x-   =0. 

For large xx , (^/gj,) «* 2^ - l), and WM (xx ) ^  (8/243)^; this latter 

quantity approaches the value 2 for x. s=w 6l3 so that A « 1049 .  Thus, 

the rarefaction shock possibility in the ideal gas is effectively 

ruled out. 

B. Single Phase, Van der Waals 

Here the test is to see if Eq, (ll) can be fulfilled, Comnutations 

show the largest value of G(V,T) to be 2.184 at V/Vc = 1.483, and 

T/Tc = .9711 (a point on the saturated vapor line).  Here C°/R ä 16.65 

will satisfy Eq. (ll), independent of (CV/R)': attaining this condition 

requires at least A = 14 modes, each one almost completely excited at a 

temperature near critical for the substance. 

C. Equilibrium Coexisting Phases 

For this domain, one searches for conditions which might satisfy 

inequality Eq. (26;. Again making use of Eqs. (34) and (36), one finds 

that Eq. (26) cannot be fulfilled for A less than 83 vibrational modes, 

each of whose 9 »= 3-5 Tc for the substance.  This restriction for 

practical purposes nullifies the rarefaction shock probability in the 

equilibrium coexistence state of this fluid. 

VIII,  COMPARISON WITH STEAM TABLES 

Following the appearance of the early analysis by Zeldovich for 

the vapor phase of the Van der Waals fluid, a short treatment by 
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Novikov9 was given for the two-phase state of steam.  By using an 

adiabatic differential equation of state and the resulting interpolating 

formula with (unreferenced) steam tables, Novikov concluded that the 

necessary condition for the rarefaction shock could be satisfied in the 

two phase region near critical.  For comparison, we show several 

equilibrium isentropes for steam in this region, using given tables  , 

This is done by noting that the entropy is linear in V on the isobaric 

isotherm segment in coexistence; or, for fixed T and P, 

S(V.T) = Sfsat. lia.) + As(V-V(sat. liq.)}/fv(sat. liq.) -V(sat. liq.)}, 

where As is the vaporization entropy for this T.  Thus, one can find 

I ruin T^rie uauies a, vaiue ui v iur IIACU O euiu. vai XUUö J_ \WL   t / • 

Numerical differentation of the resulting equilibrium isentropes then 

/d2P\ 
shows where (=^5/ - 0 in coexistence. We confirm Novikov 's conclusion 

for a region between P/Pc « = 92 and 1.00.  Fig, 3 shows an enlarged 

view of the coexistence boundaries for both steam and the theoretical 

Van der Waals-Maxwell fluid, as well as representative isentropes for 

.   _.   .      .        (&V\     _ .    ,    .  _.... 
each.  The steam region wnere \T^J    «- u is enciosea Dy its sa~Gurai-iuri 

locus and the nebulous hatched boundary indicated at P/Pc « .9^-  This 

diffuse lower boundary could not be more precisely defined because of 

the lack of significant figures in the steam table data. All but one 

of the isentropes for the theoretical model correspond to Cv/R = 3/2. 

Two theoretical isentropes passing through the critical point were 

computed, one for C°/R = 3/2 and one for C°/R = 5/2; this latter one 

has only a slightly larger slope than the former. 

Fig. 3 also illustrates a common fault of the Van der Waals- 

Maxwell model in the critical region: its scaled saturation locus is 

much less flat at critical, and lies well inside that for steam; the 

same behavior is noted with respect to manv other substances 

Although the particular steam tables used here indicate the necessary 

condition for the rarefaction shock is met in a small coexistence region 
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near critical, it is by no means certain that such a discontinuity would 

actually develop.  The critical temperature for steam is quite low 

{TC (steam) = 6U70 KJ and there is a good possibility that metastable 

supersaturation of the liquid phase would occur during adiabatic 

expansion.  Such a metastable state is less likely at much higher 

temperatures.  One might then conjecture that if correspondence holds 

between steam and a fluid with a much higher critical temperature, the 

IX.  SUMMARY 

This investigation for the rarefaction shock condition in an 

equilibrium Van der Waals-Maxwell fluid has shown it to be practically 

impossible in and across all "chase regions.  Comparison with steam 

tables, however, shows that a necessary condition for the discontinuity 

does exist in principle, in the equilibrium coexistence state near 

critical.  The Van der Waals fluid model used here is recognized as not 

accurately describing a real fluid in the critica-L region. Here it 

might prove useful to perform a similar investigation using more modern 

concepts about critical state behavior18.  However, despite promising 

progress, these modern approaches of the critical region do not yet 

appear to have produced a sufficiently simple and differentiable state 

equation as to enable completion of such an investigation. 

Although the rarefaction discontinuity was shown to be impossible 

across a liquid-vapor transition boundary~, some solid-solid and liquid- 

solid phase transitions do contain the necessary conditions for this 

discontinuity.  These are mentioned in Refs. [k]  and [17], with some 

 4 — J 1   « :j~,~ -P^~  4-"UrtT-« r*->rl   r*4- ^-^ nr-,      r\-P-P^v*r^A       -Sv,  Dnf    fl Ol eAJJKX' J-intsxlUciJ-   KViueiiue    lur    OUCJ--L    cMObciiüc   w x j. c i c u.   xn   IACJ. .     l-x^j. 
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APPENDIX 

±LLC   iiuiibiug   vaiueb   ui    uiciiiy    quctu u± uiu t   iiictri.±iig   up    out'   J-iV,vi , J-) 

defined in Eq. (22) for the coexistence state are tabulated by Barieau" 

His method employed a power series expansion of reduced density along 

the saturated boundary near critical»  The reduced variables were 

P = P/Pc , Y = T/Tc and a  = Vc/V, and a, with j = 1 or 3 representing 

reduced densities on the saturated vapor and liquid loci, respectively. 

All other thermodynamic quantities for the coexistence state can be 

expressed in terms of these Qj and their scaled temperature derivatives 

The Maxwell rule gives a functional relationship between at-^   and <x3 ; 

defining y = or, - 1 and x = 1 - aii , the power series expansion usine 

y = X  ^x1 . (Al) 
i=l 

Barieau found the first three coefficients to be ai =1, a^   = (l/5) and 

a/3 = (1/25).  In order to find the limit at critical of our functions 
T} ' I rn ^       TOYTA       n-^A    v (m \    ^4-    ^-^^    ~ ,-* ~~ ^ ,-, ~~...   4-^    -p-t~.a    4-T~~    4:*^,,—4-i~   ~—a  
ID   \ J. 1 ,   11 \ 1 y j    anu.   i\\±j    xu   wctö   neue^^ai ,y    ou   ± XIIU    one   luuriu   uruer 

coefficient, which we determine to be 84 = (19/350).  It is understood 

that within coexistence the pressure, P, is the vapor pressure PA. We 

further adc~>t the notation that a ^rime on a reduced variable denotes 

differentiation by reduced temperature, Y-  Then our dimensioniess 

function Z(T) = 1 + 3Y3"/P' has the limiting value at critical of 8.2. 

Making use of a4, we further find that the critical limit of &"'  is 
c    cncli rrru~    -p,,„„4--;„~     T f f rn\    ,• ,, ,„n     4-„     ST,     /m   2\!'^,Q'"   _L   a"l         j    1 J.I. _ 
J'JVJ^'       J-uc   iiiiiunuu   u    \±j   ±ü   equctJ-    uu    \r^ / ±£     JLYV      T   M    J,   cUiU.   rias   "trie 

limiting value at critical I5.I95U (Pc/Tc"). We show in Fig. U the 

the behavior of J'(T)(TC
2
/PC), always positive in the range of interest. 

The form of N(T) given by Eq. (25) does not permit finding its 

limit simply by taking the sum of the limits of each term on the right, 

because these term limits are + °° and - <*>;   instead, a tedious expansion 

of this sum of terms using Eq, (Al) vieids at critical the limiting 

value of 
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UXII1      t.Lt\±JJ      -      U/u/\1ViC   /ViJ'T"r"rv/ 

ana iiim  i'ri^'i'yj   =   V j/u;nv-L0.1+t+l+1-'y •     BUICUVKI,   OXHUC  uxin   ir^iyj   - -r.yn. 

then Lim  {K(T)/R}   =  31.860. 
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